A Note on Random Walk

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the two-sided regulated random walk

In this paper we address the two-sided regulated random walk defined by the relation XN(t + 1)= min(N,max(0,XN(t)+ A(t+1))) where (A(t); t 1) is a sequence of i.i.d r.v’s with integer values such that A(t) −1,E{A} = 0 and E{rA}<+∞ for an r > 1. Denoting by πN its stationary distribution, FN(x)= πN([0,Nx]) and G(x) the d.f of a uniform r.v on [0,1]. It is shown that 0 < limN‖FN −G‖p limN‖FN −G‖p...

متن کامل

A Random Walk with Exponential Travel Times

Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...

متن کامل

Random walk on random walks

In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ρ ∈ (0,∞). At each step the random walk performs a nearest-neighbour jump, moving to the right with probability p◦ when it is on a vacant site and probability p• when it is on an oc...

متن کامل

A Note on the Poincaré and Cheeger Inequalities for Simple Random Walk on a Connected Graph

In 1991, Persi Diaconis and Daniel Stroock obtained two canonical path bounds on the second largest eigenvalue for simple random walk on a connected graph, the Poincaré and Cheeger bounds, and they raised the question as to whether the Poincaré bound is always superior. In this paper, we present some background on these issues, provide an example where Cheeger beats Poincaré, establish some suf...

متن کامل

Random walk on a polygon

Abstract: A particle moves among the vertices of an (m + 1)-gon which are labeled clockwise as 0, 1, . . . , m. The particle starts at 0 and thereafter at each step it moves to the adjacent vertex, going clockwise with a known probability p, or counterclockwise with probability 1 − p. The directions of successive movements are independent. What is the expected number of moves needed to visit al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Mathematical Statistics

سال: 1949

ISSN: 0003-4851

DOI: 10.1214/aoms/1177729954